In this paper, an improved reliable acceptance sampling plan (Truncated hybrid Double Acceptance Sampling Plan (THDASP)) is proposed for products life that follows Weibull distribution when the testing is truncated at a specified time (t). This type of inspection sampling plan can be used to save the testing time in practical situations. The optimal sample sizes (n) required for testing product quality to ascertain a true mean life is obtained under a given Maximum Allowable Percent Defective (β), test termination ratios and acceptance numbers(C). The operating characteristic (OC) values formula is being developed considering both the Producer’s and Consumer’s risk and the values are generated. The Mean Life Ratios and curves of the plan are examined with varying ratio of the true mean life to the specified life. The advantage of this inspection plan is that could it results in better economic reliability product quality testing that protects the producer from rejecting his good lots and consumers from accepting bad lots of finished products. The mean life ratio values will also guides the producer on how to improve on his product’s quality. A numerical example is also discussed for illustrative purpose.
Published in | American Journal of Management Science and Engineering (Volume 2, Issue 5) |
DOI | 10.11648/j.ajmse.20170205.12 |
Page(s) | 80-88 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Truncated, Acceptance Sampling, Reliability, Producer’s Risk, Consumer’s Risk, Mean Ratio, Operating Characteristics
[1] | Aslam, M. and R. R. L. Kantam (2008). Economic acceptance sampling based on truncated life tests in the Birnbaum-Saunders distribution. Pak. J. Stat., 24(4): pp.269-276. |
[2] | Aslam, M. and C. H. Jun (2009). A group acceptance sampling plan for truncated life test having Weibull distribution. J. Appl. Stat., 36(9): pp.1021-1027. |
[3] | Aslam, M., C. H. Jun and M. Ahmad (2009). Double acceptance sampling plans based on truncated life tests in the Weibull model. J. Stat. Theor. Appl., 8(2): pp. 191-206. |
[4] | Balakrishnan.M, Leiva.V and Lopez.J (2007). Acceptance sampling plans from truncatedlife tests based on the Generalized Birnbaum-Saunders distribution. Comm. Stat. Simul. Comp., (36), pp. 643-656 |
[5] | Balamurali, S. and C.H. Jun (2006). Repetitive group sampling procedure for variables inspection. J. Appl. Stat., 33(3): pp. 327-338. |
[6] | Braimah, O. J and Osanaiye, P. A. (2016). Improved single truncated acceptance sampling plans for product dife Distributions, Journal of Sustainable Development in Africa, 18(3):pp. 91-115. |
[7] | Braimah O. J, Osanaiye P. A and Edokpa I. W. (2016). Improved single truncated acceptance sampling plans for Weibull product life distributions.Journal of the National Association of Mathematical Physics, 38, pp. 451-460. |
[8] | Epstein, B. (1954). Truncated life tests in the Exponential Case. Ann. Math. Statist. (25), pp.555-564 Goode. |
[9] | H. P. and Kao, J. H. K. (1961). Sampling plans based on the Weibull distribution. In Proc 7th Nat. Symp. Rel. Qual. Cont., pp. 24-40. |
[10] | Gupta S. S. (1960). Order Statistics from Gamma Distribution. Technometrics, (2), pp. 243-262. |
[11] | Gupta S. S. (1962). Life Test sampling plans for normal and lognormal distributions. Technometrics, 4(2), pp. 151-175. |
[12] | Marshall, A. W and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, pp. 641-652. |
[13] | Muhammad, A., Debasis, K. and Munir, A. (2010). Time truncated acceptance sampling plans for Generalized Exponential distribution.Pak. J. Commer. Soc. Sci. 1, pp.1-20. |
[14] | Priyah and Ramaswamy, A. R. S. (2015). A group acceptance aamplingPpan for weighted binomial on truncated life tests using Exponential and Weibull distributions. Journal of Progressive Research in Mathematics. 2(1), pp. 80-88. |
[15] | Sherman, R. E. (1965). Design and evaluation of repetitive group sampling plan. Technometrics, pp. 11-21. |
[16] | Sobel, M. and Tischendr of, J. A. (1959).Acceptance sampling with new life test objectives. Proceedings of Fifth National Symposium on Reliability and Quality Cont., 1, pp. 108-118. |
[17] | Srinivasa S. (2011). Double acceptance sampling plans based on truncated life tests for the Marshall Olkin’s extended exponential distribution, Austrian Journal of Statistics, 40(3), pp. 169-176. |
[18] | Sudamani, A. R. R and Priyah A. (2012).Acceptance sampling plan for truncated life tests at maximum allowable percent defective. Int. J. of Computational Engr. Research.,2(5), pp. 1413-1418. |
[19] | Sudamani, A. R. R. and Jayasri, S. (2012). Time truncated chain pampling plans for generalized exponential distribution. Int. J. of Computational Engr. Research (ijceronline.com).2 (5), pp.1402-1407. |
[20] | Sudamani, A. R. R. and Jayasri S. (2013).Time truncated chain sampling plans for Marshall-Olkin extended exponential distributions. IOSR J. Of Maths., 5(1), pp. 01-05. |
[21] | Sudamani, R. R and Jayasri, S (2016). Time truncated chain sampling plan for Welbull distributions. International Journal of Engineering Research and General Science, 3(2).pp.59-67. |
APA Style
Braimah Odunayo Joseph, Osanaiye Peter Asanaiye. (2017). Truncated Hybrid Double Acceptance Sampling Plan (THDASP) for Weibull Product Life Distribution. American Journal of Management Science and Engineering, 2(5), 80-88. https://doi.org/10.11648/j.ajmse.20170205.12
ACS Style
Braimah Odunayo Joseph; Osanaiye Peter Asanaiye. Truncated Hybrid Double Acceptance Sampling Plan (THDASP) for Weibull Product Life Distribution. Am. J. Manag. Sci. Eng. 2017, 2(5), 80-88. doi: 10.11648/j.ajmse.20170205.12
AMA Style
Braimah Odunayo Joseph, Osanaiye Peter Asanaiye. Truncated Hybrid Double Acceptance Sampling Plan (THDASP) for Weibull Product Life Distribution. Am J Manag Sci Eng. 2017;2(5):80-88. doi: 10.11648/j.ajmse.20170205.12
@article{10.11648/j.ajmse.20170205.12, author = {Braimah Odunayo Joseph and Osanaiye Peter Asanaiye}, title = {Truncated Hybrid Double Acceptance Sampling Plan (THDASP) for Weibull Product Life Distribution}, journal = {American Journal of Management Science and Engineering}, volume = {2}, number = {5}, pages = {80-88}, doi = {10.11648/j.ajmse.20170205.12}, url = {https://doi.org/10.11648/j.ajmse.20170205.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmse.20170205.12}, abstract = {In this paper, an improved reliable acceptance sampling plan (Truncated hybrid Double Acceptance Sampling Plan (THDASP)) is proposed for products life that follows Weibull distribution when the testing is truncated at a specified time (t). This type of inspection sampling plan can be used to save the testing time in practical situations. The optimal sample sizes (n) required for testing product quality to ascertain a true mean life is obtained under a given Maximum Allowable Percent Defective (β), test termination ratios and acceptance numbers(C). The operating characteristic (OC) values formula is being developed considering both the Producer’s and Consumer’s risk and the values are generated. The Mean Life Ratios and curves of the plan are examined with varying ratio of the true mean life to the specified life. The advantage of this inspection plan is that could it results in better economic reliability product quality testing that protects the producer from rejecting his good lots and consumers from accepting bad lots of finished products. The mean life ratio values will also guides the producer on how to improve on his product’s quality. A numerical example is also discussed for illustrative purpose.}, year = {2017} }
TY - JOUR T1 - Truncated Hybrid Double Acceptance Sampling Plan (THDASP) for Weibull Product Life Distribution AU - Braimah Odunayo Joseph AU - Osanaiye Peter Asanaiye Y1 - 2017/10/23 PY - 2017 N1 - https://doi.org/10.11648/j.ajmse.20170205.12 DO - 10.11648/j.ajmse.20170205.12 T2 - American Journal of Management Science and Engineering JF - American Journal of Management Science and Engineering JO - American Journal of Management Science and Engineering SP - 80 EP - 88 PB - Science Publishing Group SN - 2575-1379 UR - https://doi.org/10.11648/j.ajmse.20170205.12 AB - In this paper, an improved reliable acceptance sampling plan (Truncated hybrid Double Acceptance Sampling Plan (THDASP)) is proposed for products life that follows Weibull distribution when the testing is truncated at a specified time (t). This type of inspection sampling plan can be used to save the testing time in practical situations. The optimal sample sizes (n) required for testing product quality to ascertain a true mean life is obtained under a given Maximum Allowable Percent Defective (β), test termination ratios and acceptance numbers(C). The operating characteristic (OC) values formula is being developed considering both the Producer’s and Consumer’s risk and the values are generated. The Mean Life Ratios and curves of the plan are examined with varying ratio of the true mean life to the specified life. The advantage of this inspection plan is that could it results in better economic reliability product quality testing that protects the producer from rejecting his good lots and consumers from accepting bad lots of finished products. The mean life ratio values will also guides the producer on how to improve on his product’s quality. A numerical example is also discussed for illustrative purpose. VL - 2 IS - 5 ER -